Bangladesh-origin scientist Zahid Hasan, who is currently a Princeton professor of physics, has led a research team to discover massless particle vastly known as a “Weyl fermion.”
Two separate teams of the researchers have found evidence for a theorized type of the particle, reports IFL Science.
The discovery was made by scientists at Princeton University in New Jersey and the Massachusetts Institute of Technology, and could herald a whole new age of better electronics.
Weyl fermions were first hypothesized by German mathematician and physicist Hermann Weyl in 1929.
They were proposed as being among the building blocks of subatomic particles, and were also said to be unique in that they would have no mass and also behave as both matter and antimatter – which has the same mass but opposite charge and other properties to regular matter – inside a crystal.
Initially, they were wrongly identified as neutrinos, until it was found in 1998 that neutrinos have a very small amount of mass. Now the researchers say they have solved the 85-year-old mystery for good. The research by both teams was published in the journal Science.
They found the fermions independently by firing photons at crystals of a semi-metal called tantalum arsenide, which has properties between an insulator and a conductor.
They cannot exist by themselves as standalone particles, but instead exist as quasiparticles – a “disturbance” in a medium that behaves like a particle. “In other words, they are electronic activity that behaves as if they were particles in free space,” IEEE explains.
But they are important, because Weyl fermions are very stable, and they will also only interact with other Weyl fermions, staying on the same course and at the same speed until they do. This means that, for example, they can carry a charge for long distances without getting scattered and creating heat, like electrons, according to Live Science.
“The physics of the Weyl fermion are so strange, there could be many things that arise from this particle that we’re just not capable of imagining now,” said co-author Zahid Hasan, a Princeton professor of physics who led the research team, in a statement.
Particles are essentially divided into two groups. Fermions are said to be those that make up matter, while bosons are the force particles that hold them together. All other fermions are known to have mass, making the Weyl fermion unique among its “peers.”
And its unique properties could make it incredibly useful for electronics in the future, including the development of quantum computing, Hasan told IFLScience. For one thing, they can move independently of one another, and they can also create massless electrons.
The consequence is they could flow more easily and lose less heat, making electrons more efficient. “It’s like they have their own GPS and steer themselves without scattering,” Hasan added in the statement.
More research will be needed in the future to determine just how useful Weyl fermions could turn out to be.
Source: Dhaka Tribune